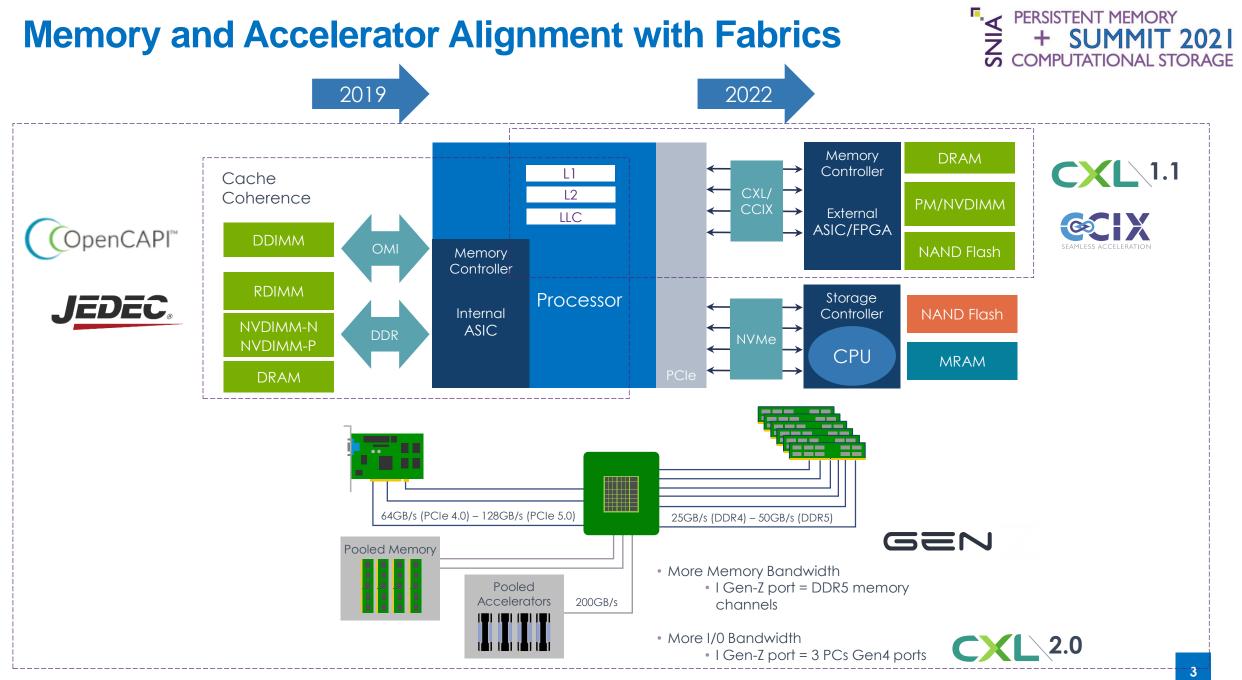


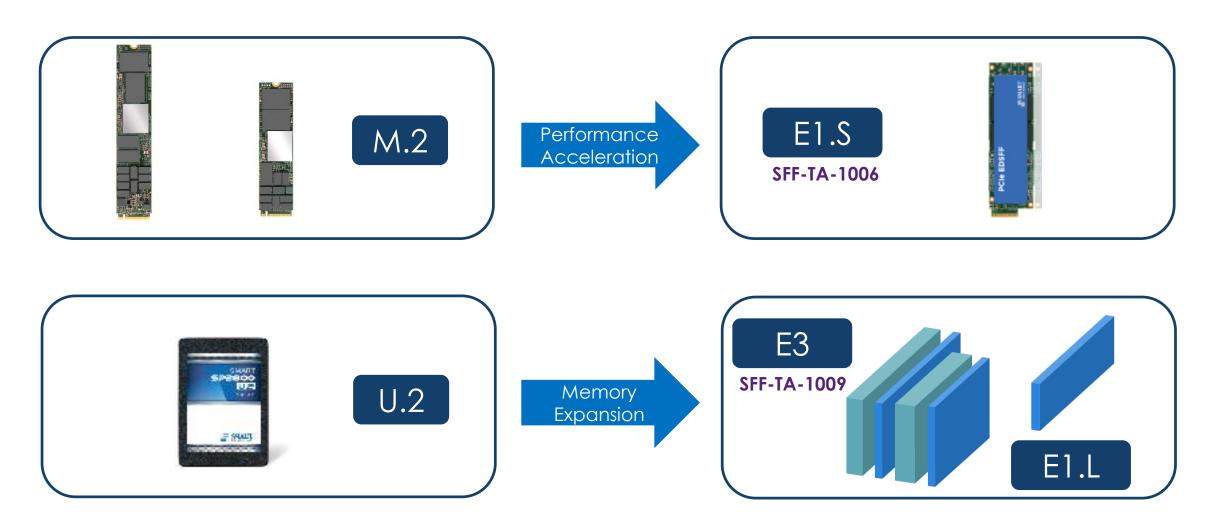
Future of Persistent Memory, DRAM and SSD Form Factors Aligned with New System Architectures

As first presented at SNIA Persistent Memory Summit 2021

Large Datasets Need Memory that Scales



Processor memory and I/O technologies ...


... are being stretched to their limits

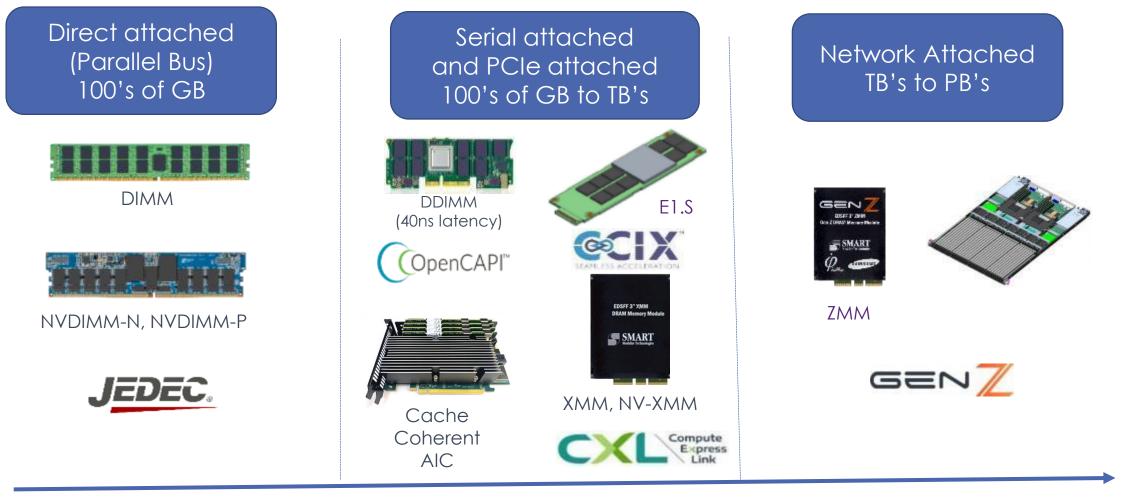
More than 2X digital data will be created over the next five years compared to the combined amount since the advent of digital storage (Source; IDC, Mar 2020)

Form Factor Migration

Performance

Direct attached (Parallel Bus) 100's of GB DIMM DIMM NVDIMM-N, NVDIMM-P (Persistent)		Serial attached and PCIe attached 100's of GB to TB's			Network Attached TB's to PB's	
		E1.S (x4)		Memory Module	OpenCAPI DDIMM	
	DDR DIMM	E1.S 1C (x4)	E1.S 2C (x8)	E3.S AIC (x16)	E3 with x8 (2C)	Across network
Current Generation *	DDR4@3200 25.6GB/s	PCIe-Gen4-x4 7.8GB/s	PCIe-Gen4-x8 15.7GB/s	PCIe-Gen4-x16 31.5GB/s	OMI 25.6 GB/s 8 Ianes	RDMA (Fabric and work load dependent)
Future Generation **	DDR5@4800 63.0GB/s	PCIe-Gen5-x4 15.7GB/s	PCIe-Gen5-x8 31.5GB/s	PCIe-Gen5-x16 63.0GB/s	DDR5 DDIMM (TBD) GB/s	Gen-Z, NVMe-oF (TBD)

* Source(s): https://en.wikipedia.org/wiki/PCI_Express#History_and_revisions


https://en.wikipedia.org/wiki/DDR4_SDRAM#JEDEC_standard_DDR4_module

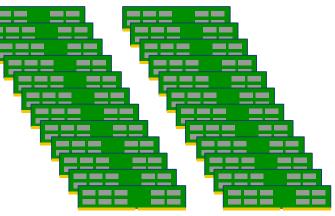
https://www.smartm.com/media/press-releases/smart-modular-to-showcase-its-ddr4-differential-dimm-at-the-flash-memory-summit

** Source(s): https://www.tomshardware.com/news/ddr5-6400-ram-benchmarks-major-performance-gains-ddr4

<100ns

<350ns

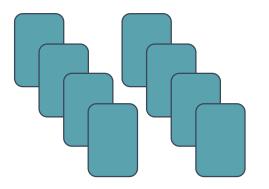
Form Factors



Serial attached Direct attached Network Attached and PCIe attached (Parallel Bus) TB's to PB's 100's of GB to TB's 100's of GB EDSFF 3" XMM **DRAM Memory Mo** DIMM SMART いまっ DEFF T AND E3.S (x8) NVDIMM-N, NVDIMM-P E3.S (x16) E1.S (x4) E1.S (x8) E1.S with x4 E3.S with x16 E1.S with x8 (2C) **DDR4 DIMM** E3 with x8 (2C) **Network Card** (1C)(4C) 288 pins 84 pins 84 pins 56 pins 140 pins Media and protocol (64 data, (16 diff-data, (32 diff-data, (64 diff-data, (32 diff-data, Pins specific 87 sideband, rest 16 sideband, 24 18 sideband, 34 24 sideband, 52 18 sideband, 34 power) power) power) power) power) 57.0mm x 35.6mm x Connect 23.8mm x 142.0mm x 6.5mm 35.6mm x 6.0mm SFP/QSFP/... 6.0mm 6.0mm 6.0mm or (LxW) Input voltage Input voltage Input voltage 12V Input voltage=1.2V 12V 12V Input voltage Vaux 3.3 Vendor specific Power **VPP 2.5** Vaux 3.3 Vaux=3.3 12V (optional) (optional) (optional)

Bandwidth

12 Channels 2 DIMMs/Channel 128GB DIMM 3TB Memory



- Theoretical maximum bandwidth of 921.6 GB/S
- 9.6 GB/s per core

PERSISTENT MEMORY + SUMMIT 2021 COMPUTATIONAL STORAGE

8 x8 links 256GB E3.S 2TB Memory

- Theoretical maximum bandwidth of 252.16 GB/s
- 2.6 GB/s per core.

Estimated higher bandwidth of 12.2 GB/s per core

E1.S and E1.L for Memory Acceleration

	Feature	Description
	Host Interface	 Data: PCIe x4,x8 Sideband: SMBus (I2C) Wake-up, Low-power (PWRDIS),
interconnect	Memory	64-128GB with DDR4 or DDR5
	Protocols	NVMe, CXL, CCIX, Gen-Z
SMART A REAL PARAMETER AND	Power	 Multiple profiles from 12,16, 20, 25W Completely bus powered: 12V (main), 3.3V Aux Supports low power modes (CLKREQ# PWRDIS signaling)
	Targeted Use Cases	 Targeted for 1U Servers 16 – 32 Slots per 1U Server Improves performance by offloading
	Memory Acceleration	fixed functions like encryption, compression or Key-Value semantics to Memory modules.

Source: https://www.anandtech.com/show/16248/edsff-form-factor-updates

E3.S and E3.L for Memory Expansion

EDSFF 3" XMM DRAM Memory Module
SMART Kolder Technologies

Feature	Description
Host Interface	 Data: PCIe x16 Sideband: SMBus (I2C) Wake-up, Low-power (PWRDIS),
Memory	Up to 256GB with DDR4 or DDR5 ** A Non-volatile persistent memory feature could be support on this form-factor using back- up and restore functionality like in NVDIMM-N.
Protocols	NVMe, CXL, CCIX, Gen-Z
Power	 2 profiles 25W (thin) and 40W (thick) Bus powered: 12V (main), 3.3V Aux Supports low power modes (CLKREQ#, PWRDIS signaling)
Targeted Use Cases Memory Expansion	Targeted for 2U Server Enables 4TB – 8 TB of Memory expansion with 16 E3.S modules in single 2U server, achieving better throughput than direct attached DDR4 DIMM.

OpenCAPI High Bandwidth Memory - DDIMM

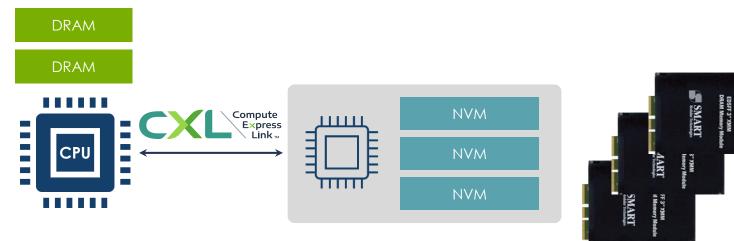
COpenCAPI™

Feature	Description
Host Interface	• OpenCAPI
Memory	• Up to 256GB
Protocols	 OMI – Open Memory Interface The memory bus is defined with one read port and one write port per channel, each having eight unidirectional differential lanes
Performance	 DDR4-3200 Latency 40ns Data throughput rate of 25.6GB/s with 8 lanes The DDIMM/OMI approach delivers up to 4TB of memory on a server at about 320GB/second or 512GB at up to 650GB/s sustained rates.
Targeted Use Cases	 Targeted for servers High bandwidth, low latency serial connection for memory, accelerators, network, storage, and other devices like ASICs

NVDIMM for Persistent Memory

Key Features of DDR4 and DDR5 NVDIMM-N

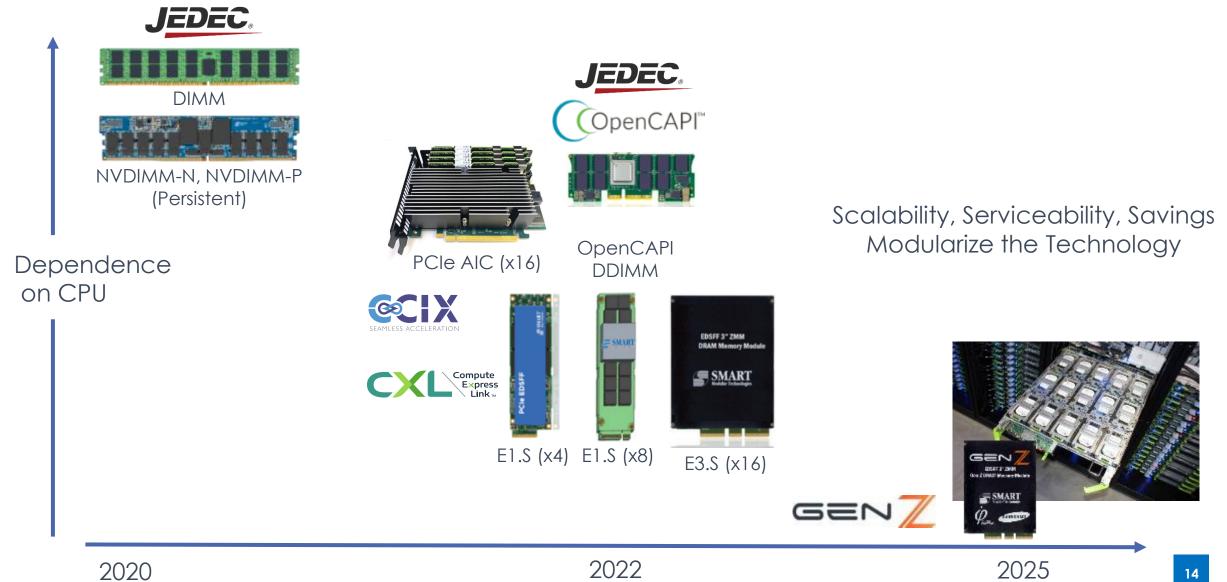
- Operation like DRAM
- Fast recovery from system power loss
- Software overhead can be eliminated



Backup Power

Feature	Description
Host Interface	• DDR
Memory	• DDR4 16GB, 32GB • DDR5 32GB, 64GB
Protocol	• JEDEC Compliant DDR4 / DDR5
Features	 Throughput of 25.6GB/s (DDR4) Latency ~20ns AES 256 bit Encryption
Targeted Use Cases	 All Flash Arrays, Storage Servers, HPC, Al Training Servers Needed for very low latency tiering, caching, write buffering, metadata storage, checkpointing Needed for Al/ML algorithm processing

CXL-based NVDIMM (NV-XMM)


Source: Modified from PIRL 2019, "Accelerate Everything", Stephen Bates, Eideticom

High-speed DRAM with built-in back-up power to back-up data to on-module Flash during power loss.

Conclusions

Future of Persistent Memory, DRAM and SSD Form Factors

14